The q-boson realizations of the quantum groups $U_{q}\left(D_{n}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 326141
(http://iopscience.iop.org/0305-4470/32/34/303)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:39

Please note that terms and conditions apply.

The q-boson realizations of the quantum groups $U_{q}\left(D_{n}\right)$

Č Burdík $\dagger \S$ and O Navrátil \ddagger
\dagger Department of Mathematics, Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 12000 Prague 2, Czech Republic
\ddagger Department of Mathematics, Faculty of Transportation Sciences, Czech Technical University, Konviktská 20, 11000 Prague, Czech Republic
E-mail: burdik@dec1.fjfi.cvut.cz

Received 5 January 1999, in final form 6 April 1999

Abstract

We give explicit realization for the quantum enveloping algebras $U_{q}\left(D_{n}\right)$. To obtain recurrence formulae we simply extend the algebra $U_{q}\left(D_{n}\right)$ to $U_{q}\left(\tilde{D}_{n}\right)$, for which $U_{q}\left(D_{n}\right)$ is a subalgebra. In these formulae the generators of the algebra are expressed by means of $2 n-2$ canonical q-boson pairs and one auxiliary representation of $U_{q}\left(\tilde{D}_{n-1}\right)$.

1. Introduction

Quantum groups or q-deformed Lie algebras imply some specific deformations of classical Lie algebras. From a mathematical point of view, they are non-commutative associative Hopf algebras. The structure and representation theory of quantum groups were developed extensively by Jimbo [1] and Drinfeld [2]. For a deeper introduction to quantum groups, we would like to recommend some monographs [3,4].

The q-boson realizations of quantum groups are interesting for both mathematicians and physicists. They are interesting for physicists, since the expression of generators of quantum algebras in terms of elements of the q-oscillator algebra makes it possible to determine physical quantities (for example, Hamiltonians) in terms of the elements of a quantum algebra. Then, using concrete representations of this quantum algebra, we may try to find the spectrum of this physical quantity [5]. Such examples of applications for the cases of classical Lie algebras and their realizations in terms of the usual quantum oscillator are well known in nuclear physics $[6,7]$ and in solid state physics $[8,9]$.

The q-boson realizations of quantum groups are interesting for mathematicians, since they can be used for constructing infinite-dimensional representations of quantum algebras. Here it is necessary to note that representations of Lie algebras can be constructed from the corresponding representations of their Lie groups and the latter representations are simply constructed by the method of induced representations when using representations of the corresponding subgroups. In the case of quantum algebras, no method exists for the construction of infinite-dimensional irreducible representations of a quantum algebra from representations of the corresponding quantum group. This fact makes the results of this paper very important from the point of view of the theory of infinite-dimensional representations of quantum algebras.

[^0]Following the pioneering works [10,11], q-boson realizations of the quantum groups were constructed in many papers [12-19]. In our papers [20-22] we studied the realizations of $U_{q}(s l(2)), U_{q}(g l(n))$, and $U_{q}\left(B_{n}\right)$. Some special Dyson-type realizations were studied in [23].

2. Preliminaries

In this paper, we use the definition of a quantum group [1] given by relations among its Chevalley generators.

Let \mathcal{L} be a simple finite-dimensional Lie algebra. $\boldsymbol{A}=\left(a_{i j}\right)$ is its Cartan matrix. Let q be an independent variable, $\mathcal{A}=C\left[q, q^{-1}\right]$ and $\mathcal{C}(q)$ is a division field of \mathcal{A}. For $n \in N$ and $d \in N$ we denote

$$
\begin{align*}
& {[n]_{d}=\frac{q^{n d}-q^{-n d}}{q^{d}-q^{-d}} \in \mathcal{A}} \tag{1}\\
& {[n]_{d}!=[n]_{d} \cdot[n-1]_{d} \cdot \ldots \cdot[1]_{d}} \tag{2}
\end{align*}
$$

and

$$
\left[\begin{array}{c}
n \tag{3}\\
j
\end{array}\right]_{d}=\frac{[n]_{d}!}{[n-j]_{d}!\cdot[j]_{d}!} .
$$

If $d=1$ we omit the subscript d.
Let d_{i} be the smallest natural numbers such that matrix $\left(d_{i} a_{i j}\right)$ is symmetric and positive.
The quantized universal enveloping algebra $U_{q}(\mathcal{L})$ of a semisimple Lie algebra \mathcal{L} on the field $\mathcal{C}(q)$ is defined by Chevalley generators E_{i}, F_{i}, K_{i} and $K_{i}^{-1}, i=1, \ldots, n$, which satisfy the commutation relations

$$
\begin{align*}
& K_{i} K_{j}=K_{j} K_{i} \quad K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1 \\
& K_{i} E_{j} K_{i}^{-1}=q_{i}^{a_{i j}} E_{j} \quad K_{i} F_{j} K_{i}^{-1}=q_{i}^{-a_{i j}} F_{j} \\
& E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}} \\
& \sum_{s=0}^{1-a_{i j}}(-1)^{s}\left[\begin{array}{c}
1-a_{i j} \\
s
\end{array}\right]_{d_{i}} E_{i}^{1-a_{i j}-s} E_{j} E_{i}^{s}=0 \quad i \neq j \tag{4}\\
& \sum_{s=0}^{1-a_{i j}}(-1)^{s}\left[\begin{array}{c}
1-a_{i j} \\
s
\end{array}\right]_{d_{i}} F_{i}^{1-a_{i j}-s} F_{j} F_{i}^{s}=0
\end{align*} \quad i \neq j
$$

where $q_{i}=q^{d_{i}}$.
In the case of $U_{q}\left(D_{n}\right)$ the Cartan matrix is

$$
\boldsymbol{A}=\left(a_{i j}\right)=\left(\begin{array}{cccccccc}
2 & -1 & 0 & \ldots & \ldots & \ldots & \ldots & \ldots \\
-1 & 2 & -1 & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & -1 & 2 & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & 2 & -1 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 & 2 & -1 & -1 \\
\ldots & \ldots & \ldots & \ldots & 0 & -1 & 2 & 0 \\
\ldots & \ldots & \ldots & \ldots & 0 & -1 & 0 & 2
\end{array}\right) .
$$

In this case we have $d_{i}=1$ for $i=1, \ldots, n$, which gives $q_{i}=q$ for $i=1, \ldots, n$.

The commutation relations for Chevalley generators are

$$
\begin{array}{lc}
K_{i} E_{j} K_{i}^{-1}=q^{a_{i j}} E_{j} \quad K_{i} F_{j} K_{i}^{-1}=q^{-a_{i j}} F_{j} & i=1, \ldots, n \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j}\left(K_{i}-K_{i}^{-1}\right) /\left(q-q^{-1}\right) & i=1, \ldots, n \\
E_{i}^{2} E_{i \pm 1}-\left(q+q^{-1}\right) E_{i} E_{i \pm 1} E_{i}+E_{i \pm 1} E_{i}^{2}=0 & i=1, \ldots, n-1 \tag{5}\\
E_{n}^{2} E_{n-2}-\left(q+q^{-1}\right) E_{n} E_{n-2} E_{n}-E_{n-2} E_{n}^{2}=0 & \\
E_{n-2}^{2} E_{n}-\left(q+q^{-1}\right) E_{n-2} E_{n} E_{n-2}-E_{n} E_{n-2}^{2}=0 &
\end{array}
$$

and similar commutation relations for F_{i}.
In paper [24] we showed the construction of boson realizations for the simple Lie algebra \mathcal{L}, by using the induced representations. We also used this method for quantum algebra [21,25]. The difference is that for the quantum algebra case we do not use the \mathcal{W} algebra but its q deformed version $\mathcal{H}[10,11]$.

The algebra \mathcal{H}, is the associative algebra over field $\mathcal{C}(q)$ which is generated by elements of $a^{+}, a^{-}=a, q^{x}$ and q^{-x}, which satisfy the commutation relations

$$
\begin{align*}
& a a^{+}-q^{-1} a^{+} a=q^{x} \quad a^{+}-q a a^{+} a=q^{-x} \\
& q^{x} a^{+} q^{-x}=q a^{+} \quad q^{x} a q^{-x}=q^{-1} a \tag{6}\\
& q^{x} q^{-x}=q^{-x} q^{x}=1 .
\end{align*}
$$

This algebra has faithful representation on a vector space with basic elements $\{|n\rangle$, where $n=0,1, \ldots\}$:

$$
\begin{align*}
& q^{x}|n\rangle=q^{n}|n\rangle \\
& a^{+}|n\rangle=|n+1\rangle \tag{7}\\
& a|n\rangle=[n]|n-1\rangle .
\end{align*}
$$

Definition. Let $U_{q}(\mathcal{L})$ be a quantum algebra and $U_{q}\left(\mathcal{L}_{0}\right)$ its subalgebra. A realization of the quantum algebra $U_{q}(\mathcal{L})$ is a homomorphism

$$
\tau: U_{q}(\mathcal{L}) \longrightarrow \mathcal{H}^{n} \otimes U_{q}\left(\mathcal{L}_{0}\right)
$$

where \mathcal{H}^{n} is an n-fold tensor product of the Hayashi algebras.

3. Construction of the realization of $U_{q}\left(D_{n}\right)$

If we take the new generator K_{0} with commutation relations

$$
K_{0} E_{1} K_{0}^{-1}=q^{-1} E_{1} \quad K_{0} F_{1} K_{0}^{-1}=q F_{1}
$$

and the other commutation relations are zero, we obtain the extension of the algebra $U_{q}\left(D_{n}\right)$, which we denote as $U_{q}\left(\tilde{D}_{n}\right)$. Evidently, $U_{q}\left(D_{n}\right)$ is the subalgebra $U_{q}\left(\tilde{D}_{n}\right)$ and $U_{q}\left(\tilde{D}_{n-1}\right) \subset$ $U_{q}\left(\tilde{D}_{n}\right)$ is a subalgebra.

Let $U_{q}\left(\tilde{D}_{n-1}\right)$ be a subalgebra of $U_{q}\left(\tilde{D}_{n}\right)$, which is generated by elements $K_{1}, E_{j}, F_{j}, K_{j}$ and $K_{j}^{-1}, j=2, \ldots, n$, and φ be an arbitrary representation of $U_{q}\left(\tilde{D}_{n-1}\right)$.

Let $U_{q}\left(\mathcal{L}_{0}\right)$ be the extension of the algebra $U_{q}\left(\tilde{D}_{n-1}\right)$ by element F_{1}. The representation φ can be extended to the representation of $U_{q}\left(\mathcal{L}_{0}\right)$ if we put $\varphi\left(F_{1}\right)=0$.

We denote

$$
\begin{array}{ll}
X_{1}=E_{1} & \\
X_{k}=E_{k} X_{k-1}-q^{-1} X_{k-1} E_{k} & k=2, \ldots, n-1 \\
Y_{n-1}=E_{n} X_{n-2}-q^{-1} X_{n-2} E_{n} & \\
Y_{k}=E_{k+1} Y_{k+1}-q^{-1} Y_{k+1} E_{k+1} & k=1, \ldots, n-2
\end{array}
$$

and further
$|x, y\rangle=\left|x_{1}, x_{2}, \ldots, x_{n-1}, y_{n-1}, \ldots, y_{1}\right\rangle=X_{1}^{x_{1}} \cdot X_{2}^{x_{2}} \ldots X_{n-1}^{x_{n-1}} \cdot Y_{n-1}^{y_{n-1}} \cdot \ldots Y_{1}^{y_{1}}$.
In the algebra $U_{q}\left(\tilde{D}_{n-1}\right)$ we specify the elements

$$
\begin{array}{lr}
G_{2}=E_{2} & \\
G_{k}=E_{k} G_{k-1}-q^{-1} G_{k-1} E_{k} & k=3, \ldots, n-1 \\
H_{n-1}=E_{n} G_{n-2}-q^{-1} G_{n-2} E_{n} & \\
H_{k}=E_{k+1} H_{k+1}-q^{-1} H_{k+1} E_{k+1} & k=2, \ldots, n-2 .
\end{array}
$$

As we see, these elements appear in our induced representation, see theorem 1. In the algebra $U_{q}\left(\tilde{D}_{n-1}\right)$ they play the same role as X_{i} and Y_{j} in the algebra $U_{q}\left(\tilde{D}_{n}\right)$.

Starting from now we take the case $n>3$.
The induced representation ρ, of quantum algebra $U_{q}\left(\tilde{D}_{n}\right)$ is generated on the space with the basis

$$
|x, y ; v\rangle=|x, y\rangle \otimes v
$$

where the $\{v \in V\}$ form a basis of representation φ of the subalgebra $U_{q}\left(D_{n-1}\right)$, which is extended to the representation of $U_{q}\left(\mathcal{L}_{0}\right)$, as above.

By using the commutation relations (5) and mathematical induction we now obtain the following lemma.

Lemma. For any $k=0,1, \ldots$ and $r=2, \ldots, n-1$ the following formulae hold:

$$
\begin{aligned}
& E_{r} X_{r-1}^{k}=q^{-k} X_{r-1}^{k} E_{r}+[k] X_{r-1}^{k-1} X_{r} \\
& E_{r} Y_{r}^{k}=q^{-k} Y_{r}^{k} E_{r}+[k] Y_{r}^{k-1} Y_{r-1} \\
& E_{n} X_{n-2}^{k}=q^{-k} X_{n-2}^{k} E_{n}+[k] X_{n-2}^{k-1} Y_{n-1} \\
& E_{n} X_{n-1}^{k}=q^{-k} X_{n-1}^{k} E_{n}+[k] X_{n-1}^{k-1} Y_{n-2} \\
& F_{n} Y_{n-1}^{k}=Y_{n-1}^{k} F_{n}+[k] X_{n-2} Y_{n-1}^{k-1} K_{n}^{-1} \\
& F_{n} Y_{n-2}^{k}=Y_{n-2}^{k} F_{n}+[k] X_{n-1} Y_{n-2}^{k-1} K_{n}^{-1} \\
& F_{r} X_{r}^{k}=X_{r}^{k} F_{r}+[k] X_{r-1} X_{r}^{k-1} K_{r}^{-1} \\
& F_{r} Y_{r-1}^{k}=Y_{r-1}^{k} F_{r}+[k] Y_{r} Y_{r-1}^{k-1} K_{r}^{-1} \\
& F_{1} X_{1}^{k}=X_{1} F_{1}^{k}-\left(q-q^{-1}\right)^{-1}[k] X_{1}^{k-1}\left(q^{k-1} K_{1}-q^{-k+1} K_{1}^{-1}\right) \\
& F_{1} X_{r}^{k}=X_{r}^{k} F_{1}-q^{k-2}[k] X_{r}^{k-1} G_{r} K_{1} \\
& F_{1} Y_{r}^{k}=Y_{r}^{k} F_{1}-q^{k-2}[k] Y_{r}^{k-1} H_{r} K_{1} \\
& F_{1} Y_{1}^{k}=Y_{1}^{k} F_{1}-q^{k-1}[k] Y_{1}^{k-1} K_{1}\left(q G_{2} H_{2}-q^{-1} H_{2} G_{2}\right) \\
& G_{r} Y_{r}^{k}=q^{-k} Y_{r}^{k} G_{r}+(-1)^{r} q^{-r}[k] Y_{r}^{k-1} \Omega_{r-1} \\
& \Omega_{r} Y_{r}^{k}=(-1)^{r+1}\left(q-q^{-1}\right) q^{r-k} Y_{r}^{k+1} G_{r}+q^{-k} Y_{r}^{k} \Omega_{r-1}
\end{aligned}
$$

where $\Omega_{r}=q^{2} Y_{1}-\left(q-q^{-1}\right) \sum_{s=2}^{r}(-1)^{s} q^{s} Y_{s} G_{s}$.
We omit the details of the calculations and write the result for the action of induced representation ρ on the basis.

Theorem 1. Let $n>3$ and $r=2, \ldots, n-1$, then the formulae
$E_{1}|x, y\rangle \otimes v=\left|x+1_{1}, y\right\rangle \otimes v$
$E_{r}|x, y\rangle \otimes v=\left[x_{r-1}\right]\left|x-1_{r-1}+1_{r}, y\right\rangle \otimes v+q^{x_{r}-x_{r-1}}\left[y_{r}\right]\left|x, y-1_{r}+1_{r-1}\right\rangle \otimes v$

$$
\begin{aligned}
& +q^{x_{r}-x_{r-1}-y_{r}+y_{r-1}}|x, y\rangle \otimes \varphi\left(E_{r}\right) v \\
& E_{n}|x, y\rangle \otimes v=\left[x_{n-2}\right]\left|x-1_{n-2}, y+1_{n-1}\right\rangle \otimes v+q^{y_{n-1}-x_{n-2}}\left[x_{n-1}\right]\left|x-1_{n-1}, y+1_{n-2}\right\rangle \otimes v \\
& +q^{y_{n-1}+y_{n-2}-x_{n-1}-x_{n-2}}|x, y\rangle \otimes \varphi\left(E_{n}\right) v \\
& K_{1}|x, y\rangle \otimes v=q^{x_{1}+X_{1}^{n-1}+Y_{2}^{n-1}}|x, y\rangle \otimes \varphi\left(K_{1}\right) v \\
& K_{r}|x, y\rangle \otimes v=q^{x_{r}-x_{r-1}+y_{r-1}-y_{r}}|x, y\rangle \otimes \varphi\left(K_{r}\right) v \\
& K_{n}|x, y\rangle \otimes v=q^{y_{n-2}+y_{n-1}-x_{n-2}-x_{n-1}}|x, y\rangle \otimes \varphi\left(K_{n}\right) v \\
& K_{0}|x, y\rangle \otimes v=q^{\lambda_{0}-X_{1}^{n-1}-Y_{1}^{n-1}}|x, y\rangle \otimes v \\
& F_{n}|x, y\rangle \otimes v=q^{x_{n-1}-y_{n-2}}\left[y_{n-1}\right]\left|x+1_{n-2}, y-1_{n-1}\right\rangle \otimes \varphi\left(K_{n}^{-1}\right) v \\
& +\left[y_{n-2}\right]\left|x+1_{n-1}, y-1_{n-2}\right\rangle \otimes \varphi\left(K_{n}^{-1}\right) v+|x, y\rangle \otimes \varphi\left(F_{n}\right) v \\
& F_{r}|x, y\rangle \otimes v=q^{y_{r}-y_{r-1}}\left[x_{r}\right]\left|x-1_{r}+1_{r-1}, y\right\rangle \otimes \varphi\left(K_{r}^{-1}\right) v \\
& +\left[y_{r-1}\right]\left|x, y+1_{r}-1_{r-1}\right\rangle \otimes \varphi\left(K_{r}^{-1}\right) v+|x, y\rangle \otimes \varphi\left(F_{r}\right) v \\
& F_{1}|x, y\rangle \otimes v=-\left(q-q^{-1}\right)^{-1}\left[x_{1}\right]\left|x-1_{1}, y\right\rangle \otimes\left[q^{X_{1}^{n-1}+Y_{2}^{n-1}-1} \varphi\left(K_{1}\right)\right. \\
& \left.-q^{-X_{1}^{n-1}-Y_{2}^{n-1}+1} \varphi\left(K_{1}^{-1}\right)\right] v-\sum_{r=2}^{n-1} q^{Y_{1}^{r}-2}\left[y_{r}\right]\left|x, y-1_{r}\right\rangle \otimes \varphi\left(H_{r} K_{1}\right) v \\
& -q^{y_{1}-1}\left[y_{1}\right]\left|x, y-1_{1}\right\rangle \otimes \varphi\left[K_{1}\left(q G_{2} H_{2}-q^{-1} H_{2} G_{2}\right)\right] v \\
& -\sum_{r=2}^{n-1} q^{X_{r}^{n-1}+Y_{1}^{n-1}-y_{r}-2}\left[x_{r}\right]\left|x-1_{r}, y\right\rangle \otimes \varphi\left(G_{r} K_{1}\right) v \\
& -\sum_{r=2}^{n-1}(-1)^{r} q^{X_{r}^{n-1}+Y_{r}^{n-1}-r}\left[x_{r}\right]\left[y_{r}\right] \times\left|x-1_{r}, y-1_{r}+1_{1}\right\rangle \otimes \varphi\left(K_{1}\right) v \\
& +\left(q-q^{-1}\right) \sum_{r=3}^{n-1} \sum_{s=2}^{r-1}(-1)^{r+s} q^{X_{r}^{n-1}+Y_{r}^{n-1}+Y_{1}^{s-1}+s-r-2} \\
& \times\left[x_{r}\right]\left[y_{r}\right]\left|x-1_{r}, y-1_{r}+1_{s}\right\rangle \otimes \varphi\left(G_{s} K_{1}\right) v
\end{aligned}
$$

where

$$
X_{r}^{s}=\sum_{k=r}^{s} x_{k} \quad \text { and } \quad Y_{r}^{s}=\sum_{k=r}^{s} y_{k}
$$

give the induced representation of the algebra $U_{q}\left(\tilde{D}_{n}\right)$.
From the explicit form of the induced representation we can see that it is possible to rewrite it by using representation (7) of the Hayashi generators $a_{i}^{+}, a_{i}, q^{x_{i}}$ and $q^{-x_{i}}, b_{i}^{+}, b_{i}, q^{y_{i}}$ and $q^{-y_{i}}$, where $i, j=1, \ldots, n-1$, and representation φ of the generators $U_{q}\left(\tilde{D}_{n-1}\right)$. The facts that representation (7) is faithful and φ can be arbitrary, give us the following theorem.

Theorem 2. Let $n>3$ and $r=2, \ldots, n-1$, then the mapping $\tau: U_{q}\left(\tilde{D}_{n}\right) \rightarrow$ $\mathcal{H}^{2 n-1} \otimes U_{q}\left(\tilde{D}_{n-1}\right)$ defined by formulae:
$\rho\left(E_{1}\right)=a_{1}^{+}$
$\rho\left(E_{r}\right)=a_{r-1} a_{r}^{+}+q^{x_{r}-x_{r-1}} b_{r} b_{r-1}^{+}+q^{x_{r}-x_{r-1}-y_{r}+y_{r-1}} \varphi\left(E_{r}\right)$
$\rho\left(E_{n}\right)=a_{n-2} b_{n-1}^{+}+q^{y_{n-1}-x_{n-2}} a_{n-1} b_{n-2}^{+}+q^{y_{n-1}+y_{n-2}-x_{n-1}-x_{n-2}} \varphi\left(E_{n}\right)$
$\rho\left(K_{1}\right)=q^{x_{1}+X_{1}^{n-1}+Y_{2}^{n-1}} \varphi\left(K_{1}\right)$
$\rho\left(K_{r}\right)=q^{x_{r}-x_{r-1}-y_{r}+y_{r-1}} \varphi\left(K_{r}\right)$
$\rho\left(K_{n}\right)=q^{y_{n-1}+y_{n-2}-x_{n-1}-x_{n-2}} \varphi\left(K_{n}\right)$

$$
\begin{aligned}
& \rho\left(K_{0}\right)=q^{\lambda_{0}-X_{1}^{n-1}-Y_{1}^{n-1}} \\
& \rho\left(F_{n}\right)=q^{x_{n-1}-y_{n-2}} a_{n-2}^{+} b_{n-1} \varphi\left(K_{n}^{-1}\right)+a_{n-1}^{+} b_{n-2} \varphi\left(K_{n}^{-1}\right)+\varphi\left(F_{n}\right) \\
& \rho\left(F_{r}\right)=q^{y_{r}-y_{r-1}} a_{r} a_{r-1}^{+} \varphi\left(K_{r}^{-1}\right)+b_{r}^{+} b_{r-1} \varphi\left(K_{r}^{-1}\right)+\varphi\left(F_{r}\right) \\
& \rho\left(F_{1}\right)=-\left(q-q^{-1}\right)^{-1}\left[q^{X_{1}^{n-1}+Y_{2}^{n-1}} \varphi\left(K_{1}\right)-q^{-X_{1}^{n-1}-Y_{2}^{n-1}} \varphi\left(K_{1}^{-1}\right)\right] a_{1} \\
& \quad-\sum_{r=2}^{n-1} q^{Y_{1}^{r}} b_{r} \varphi\left(K_{1} H_{r}\right)-q^{y_{1}} b_{1} \varphi\left[K_{1}\left(q G_{2} H_{2}-q^{-1} H_{2} G_{2}\right)\right] \\
& \quad-\sum_{r=2}^{n-1} q^{X_{r}^{n-1}+Y_{r}^{n-1}-y_{r}} a_{r} \varphi\left(K_{1} G_{r}\right)-\sum_{r=2}^{n-1}(-1)^{r} q^{X_{r}^{n-1}+Y_{r}^{n-1}+2-r} a_{r} b_{r} b_{1}^{+} \varphi\left(K_{1}\right) \\
& \quad+\left(q-q^{-1}\right) \sum_{r=3}^{n-1} \sum_{s=2}^{r-1}(-1)^{r+s} q^{X_{r}^{n-1}+Y_{r}^{n-1}+Y_{1}^{s-1}+s-r+1} a_{r} b_{r} b_{s}^{+} \varphi\left(K_{1} G_{s}\right)
\end{aligned}
$$

is a realization of the quantum group $U_{q}\left(\tilde{D}_{n}\right)$. In these formulae we mean $q^{X_{r}^{s}}=\prod_{i=r}^{s} q^{x_{i}}$ and $q^{Y_{r}^{s}}=\prod_{i=r}^{s} q^{y_{i}}$.

Because $U_{q}\left(D_{3}\right)$ is isomorphic to $U_{q}\left(A_{3}\right)$, we can take the realization from our previous paper [7]:

```
\(\rho\left(E_{1}\right)=a_{1} a_{2}^{+}+q^{x_{2}-x_{1}} \varphi\left(E_{1}\right)\)
\(\rho\left(E_{2}\right)=a_{1}^{+}\)
\(\rho\left(E_{3}\right)=a_{2} a_{3}^{+}+q^{x_{3}-x_{1}} \varphi\left(E_{3}\right)\)
\(\rho\left(K_{1}\right)=q^{x_{2}-x_{1}} \varphi\left(K_{1}\right)\)
\(\rho\left(K_{2}\right)=q^{x_{1}+X_{1}^{3}} \varphi\left(K_{2}\right)\)
\(\rho\left(K_{3}\right)=q^{x_{3}-x_{2}} \varphi\left(K_{3}\right)\)
\(\rho\left(F_{3}\right)=a_{3} a_{2}^{+} \varphi\left(K_{3}^{-1}\right)+\varphi\left(F_{3}\right)\)
\(\rho\left(F_{1}\right)=a_{2} a_{1}^{+} \varphi\left(K_{1}^{-1}\right)+\varphi\left(F_{1}\right)\)
\(\rho\left(F_{2}\right)=-\left(q-q^{-1}\right)^{-1}\left[q^{X_{1}^{3}} \varphi\left(K_{2}\right)-q^{-X_{1}^{3}} \varphi\left(K_{2}^{-1}\right] a_{1}-q^{x_{2}+x_{3}} a_{a} \varphi\left(K_{2} G_{2}\right)-q^{x_{3}} a_{3} \varphi\left(K_{2} G_{3}\right)\right.\)
\(\rho\left(K_{0}\right)=q^{\lambda_{0}-x_{2}-x_{3}}\)
```

where $G_{2}=E_{1}$ and $G_{3}=E_{3} E_{1}-q^{-1} E_{1} E_{3}$ is the realization of the quantum group $U_{q}\left(A_{2}\right)$ generated by $E_{1}, E_{3}, F_{1}, F_{3}, K_{1}$ and K_{3} extended by generator K_{2}.

Acknowledgment

Partial support from the grant 202/96/0218 provided by the Czech Grant Agency is gratefully acknowledged.

References

[1] Jimbo M 1986 Lett. Math. Phys. 1063
Jimbo M 1986 Lett. Math. Phys. 11247
[2] Drinfeld V 1986 Proc. Int. Congress of Mathematicians (Berkeley) (New York: Academic) p 798
[3] Chari V and Pressley A 1994 Guide to Quantum Groups (Cambridge: Cambridge University Press)
[4] Majid S 1995 Foundation of Quantum Groups (Cambridge: Cambridge University Press)
[5] Del Sol Mesa Ǎ, Loyola G, Moshinsky M and Velázquez V 1993 J. Phys. A: Math. Gen. 261147
[6] Rink P and Shuck P 1980 The Nuclear Many-Body Problem (New York: Springer)
[7] Biedenharn L C and Louk J D 1981 Angular momentum in quantum physics Encyclopedia of Mathematics and its Application 8 (Reading, MA: Addison-Wesley)
[8] Gaspers W J 1989 Spin Systems (Singapore: World Scientific)
[9] Kittel C 1963 Quantum Theory of Solids (New York: Wiley)
[10] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[11] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[12] Chaichian M, Ellinas D and Kulish P P 1990 Phys. Rev. Lett. 65980
[13] Quesne C 1991 Phys. Lett. A 153303
[14] Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math. Gen. 24 L711
[15] Katriel J and Solomon A I 1991 J. Phys. A: Math. Gen. 242093
[16] Yu Z R 1991 J. Phys. A: Math. Gen. 24 L1321
[17] Kundu A and Mallik B 1991 Phys. Lett. A 156175
[18] Pan F 1991 Chin. Phys. Lett. 856
[19] da-Providencia J 1993 J. Phys. A: Math. Gen. 265845
[20] Burdík Č and Navrátil O 1990 J. Phys. A: Math. Gen. 23 L1205
[21] Burdík Č, Černý L and Navrátil O 1993 J. Phys. A: Math. Gen. 26 L83
[22] Burdík Č and Navrátil O 1998 Czech. J. Phys. B 471301
[23] Palev T D 1998 J. Phys. A: Math. Gen. 315145
[24] Burdík Č 1985 J. Phys. A: Math. Gen. 183101
[25] Hang-Chen Fu and Mo-Lin Ge 1992 J. Math. Phys. 33427

[^0]: § Author to whom correspondence should be addressed.

